K-FlashPro: An alternative software for determining the equilibrium constants K of light hydrocarbons in a flash evaporator

K-FlashPro: Un software alternativo para determinar las constantes de equilibrio K de hidrocarburos ligeros en un evaporador flash

Juan Jesús Reyes Valdez* 
Instituto Politécnico Nacional, CICATA, Unidad Altamira
ORCID 0000-0002-0208-6667

Yarazett Hernández Castillo
Universidad Tecnológica de Altamira
ORCID 0000-0003-4890-3228

Sandra Edith Benito Santiago
Universidad Tecnológica de Altamira
ORCID 0000-0002-5326-0397

Carolina Estrada Moreno 
Instituto Politécnico Nacional, CICATA, Unidad Altamira
ORCID 0000-0003-4995-9522

Received: February 6th, 2025 | Accepted: February 13th, 2025 | Published online: February 14 th, 2025 


How to cite:
Reyes-Valdez, J.J., Hernández-Castillo, Y., Benito-Santiago, S.E. & Estrada-Moreno, C. (2025). K-FlashPro: An alternative software for determining the equilibrium constants K of light hydrocarbons in a flash evaporator. Revista Multidisciplinaria de Ciencia Básica, Humanidades, Arte y Educación, 3(10), 86-92. https://www.mjshae.org/2025/02/k-flashpro-alternative-software-for.html [.RIS]



Abstract:
Flash evaporation (FE) is a process widely used in industry to separate volatile compounds from a mixture. The analysis of this process is of great importance due to its rapid nature and variable thermodynamic properties. However, liquid-vapor equilibrium calculations with equations of state consume a large amount of time in numerical simulations. For this reason, in this work a software is presented to solve the Rachford-Rice equation, using McWilliams correlation and Newton Raphson method. Up to 5 compounds were considered to perform the simulation. Three case studies were proposed with the most used specific variables, such as temperature, pressure, molar composition and vapor fraction. The results obtained were compared with the process simulation software ASPEN version 12. In all cases, the results were similar to those of the commercial software. 

Keywords: flash evaporation; Rachford-Rice equation; Newton-Raphson method; algorithm.



References:

Ahmadi, V., Fahim, A. H., Jabari Neek, S., & Ghassemi, H. (2023). Molecular dynamic simulation of light alkanes flash evaporation. Thermal Science and Engineering Progress, 46, 102211. https://doi.org/10.1016/j.tsep.2023.102211

Fernández Martínez, E. H., & López López, E. (2020). Some theoretical results on Rachford-Rice equation for flash calculations: Multi-component systems. Computers & Chemical Engineering, 140, 106962. https://doi.org/10.1016/j.compchemeng.2020.106962

Guo, Y. L., Yan, J. J., Chong, D. T., Liu, J. P., Guo, L., Joseph, D. D., Matsumoto, Y., Sommerfeld, Y., & Wang, Y. (2010). Experimental investigation on some key variables during pool water flash evaporation. AIP Conf. Proc. 1207, 380–385. https://doi.org/10.1063/1.3366394

Khan, W. A. (2022). Numerical simulation of Chun-Hui He’s iteration method with applications in engineering. International Journal of Numerical Methods for Heat & Fluid Flow, 32(3), 944–955. https://doi.org/10.1108/HFF-04-2021-0245

Li, Y., Johns, R. T., & Ahmadi, K. (2014). Corrigendum to “A rapid and robust alternative to Rachford–Rice in flash calculations” [Fluid Phase Equilib. 316 (2012) 85–97]. Fluid Phase Equilibria, 366, 134–135. https://doi.org/10.1016/j.fluid.2014.01.023

López López, E., Elías Domínguez, A., & García Morán, P. R. (2023). A generalization of associated polynomial for calculating flash equilibrium. Fluid Phase Equilibria, 566, 113691. https://doi.org/10.1016/j.fluid.2022.113691

McWilliams, M. (1973). Chemical Engineering. McGraw-Hill.

Monroy Loperena, R. (2022). A non-iterative vapor-liquid split calculation in isothermal flash problem. Fluid Phase Equilibria, 556, 113379. https://doi.org/10.1016/j.fluid.2022.113379

Nichita, D. V., & Leibovici, C. F. (2017). Improved solution windows for the resolution of the Rachford-Rice equation. Fluid Phase Equilibria, 452, 69–73. https://doi.org/10.1016/j.fluid.2017.08.020

Rachford, H. H., & Rice, J. D. (1952). Procedure for Use of Electronic Digital Computers in Calculating Flash Vaporization Hydrocarbon Equilibrium. Journal of Petroleum Technology, 4(10). https://doi.org/10.2118/952327-G

Shao, Y., Li, Y., Yang, L., Zhang, X., Yang, L., Wu, H., & Xu, R. (2014). New experimental system for high pressure and high temperature flashing evaporation experiments. Applied Thermal Engineering, 66(1–2), 148–155. https://doi.org/10.1016/j.applthermaleng.2014.01.020

Wang, W., Li, B., Wang, X., Li, B., & Shuai, Y. (2023). Construction of a Numerical Model for Flow Flash Evaporation with Non-Condensable Gas. Applied Sciences, 13(21), 11638. https://doi.org/10.3390/app132111638

Zhang, T., Li, Y., Li, Y., Sun, S., & Gao, X. (2020). A self-adaptive deep learning algorithm for accelerating multi-component flash calculation. Computer Methods in Applied Mechanics and Engineering, 369, 113207. https://doi.org/10.1016/j.cma.2020.113207


© (CC BY 4.0)

Cintillo Legal: Revista Multidisciplinaria de Ciencia Básica, Humanidades, Arte y Educación (Rev. Mult. C. Hum. Art. y Educ.) ISSN 2992-7722 es una publicación internacional bimestral con actualización continua, editada por Prolatam Ética Latam, A.C. con Registro Nacional de Instituciones y Empresas Científicas y Tecnológicas (RENIECYT) número 1900530. Correo electrónico de la revista: editor@mjshae.org. Reserva de Derechos al Uso Exclusivo otorgado por el Instituto Nacional del Derecho de Autor (INDAUTOR): 04-2023-082114463300-102. Las opiniones expresadas por los autores no necesariamente reflejan la postura de los editores. Se autoriza la reproducción total o parcial de los contenidos publicados, siempre y cuando se cite la fuente original. Última actualización: marzo de 2025.